Profile Hidden Markov Model for Detection and Prediction of Hepatitis C Virus Mutation
نویسندگان
چکیده
Hepatitis C virus (HCV) is a widely spread disease all over the world. HCV has very high mutation rate that makes it resistant to antibodies. Modeling HCV to identify the virus mutation process is essential to its detection and predicting its evolution. This paper presents a model of HCV based on profile hidden Markov model (PHMM) architecture. An iterative model learning procedure is proposed and applied to both full-length sequence of virus and its very high variation (mutation) zone called NS5A. A pilot study on HCV dataset of type 4 is conducted which is of special concern in Egypt.
منابع مشابه
Model Based Framework for Estimating Mutation Rate of Hepatitis C Virus in Egypt
Hepatitis C virus (HCV) is a widely spread disease all over the world. HCV has very high mutation rate that makes it resistant to antibodies. Modeling HCV to identify the virus mutation process is essential to its detection and predicting its evolution. This paper presents a model based framework for estimating mutation rate of HCV in two steps. Firstly profile hidden Markov model (PHMM) archit...
متن کاملEvaluation of First and Second Markov Chains Sensitivity and Specificity as Statistical Approach for Prediction of Sequences of Genes in Virus Double Strand DNA Genomes
Growing amount of information on biological sequences has made application of statistical approaches necessary for modeling and estimation of their functions. In this paper, sensitivity and specificity of the first and second Markov chains for prediction of genes was evaluated using the complete double stranded DNA virus. There were two approaches for prediction of each Markov Model parameter,...
متن کاملپیش بینی بیماریهای کبدی با استفاده از مدل مارکف پنهان
Background: The liver is the largest internal organ and the most important organ after heart and brain in the human body without which life is impossible. Diagnosis of liver disease requires a long time and sufficient expertise of the doctor. Statistical methods can be classified as an automated forecasting system and help specialists for quickly and accurately diagnose liver disease. Hidden Ma...
متن کاملIntrusion Detection Using Evolutionary Hidden Markov Model
Intrusion detection systems are responsible for diagnosing and detecting any unauthorized use of the system, exploitation or destruction, which is able to prevent cyber-attacks using the network package analysis. one of the major challenges in the use of these tools is lack of educational patterns of attacks on the part of the engine analysis; engine failure that caused the complete training, ...
متن کاملA generalization of Profile Hidden Markov Model (PHMM) using one-by-one dependency between sequences
The Profile Hidden Markov Model (PHMM) can be poor at capturing dependency between observations because of the statistical assumptions it makes. To overcome this limitation, the dependency between residues in a multiple sequence alignment (MSA) which is the representative of a PHMM can be combined with the PHMM. Based on the fact that sequences appearing in the final MSA are written based on th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012